Inhalte zu: Machine Learning

fig2_sentinel2_lidar_vegetationshoehe
Nico Lang

Interview: EcoVision Lab will die weltweite Biomasse kartieren und so die Umwelt besser schützen

Das EcoVision Lab der ETH Zürich arbeitet an der Entwicklung eines Tools, das auf Grundlage von Fernerkundungsdaten die Biomasse weltweit kartiert. Damit will die Forschungsgruppe eine objektive und transparente Entscheidungsgrundlage für die Landnutzungsplanung schaffen und Biodiversität und wichtige Waldflächen erhalten. Wir haben mit zwei der Köpfe des Labs gesprochen.

Interview: Können wir Künstlicher Intelligenz vertrauen?

Wie können wir KI-basierte Systeme so gestalten, dass ihr Einsatz dem Gemeinwohl nützt? Wir sprachen mit Kristina Penner von AlgorithmWatch über algorithmische Bias und Diskriminierungspotenziale von KI, aber auch über Transparenz und Teilhabe.

Smarter Sorting: KI für umweltbewusste Entscheidungen in der Abfallwirtschaft

Die KI-basierte Plattform von Smarter Sorting will den Müll im Einzelhandel reduzieren, indem sie Produkte, die sonst auf der Deponie gelandet wären, stattdessen fürs Recycling oder zur Wiederverwendung vorschlägt.

Masakhane: KI und maschinelles Übersetzen für die Transformation Afrikas

Afrikanische Sprachen sind in der digitalen Welt wenig oder gar nicht repräsentiert. Millionen Sprecher*innen von Kiswahili, isiZulu, Tshiluba und Co. sind damit von digitalen Möglichkeiten und Informationen ausgeschlossen. Ein Open-Source-Projekt tüftelt deshalb an KI-Lösungen für maschinelle Übersetzungen.